Пояснительная записка

Рабочая программа по химии для 10-11 классов (углубленный уровень) разработана на основе:

- Федерального государственного образовательного стандарта среднего общего образования, утвержденного, приказом Министерства образования и науки Российской Федерации от 17.05.2012 № 413, с изменениями, внесенными приказом Министерства образования и на Российской Федерации от 29.06.2017 № 613;
- Основная образовательная программа среднего общего образования МОУ СШ № 27.
- Авторская программа «Химия. Углубленный уровень. 10-11классы: рабочая программа к линии УМК В. В. Лунина: учебно-методическое пособие / В. В. Еремин, А. А. Дроздов, И. В. Еремина, М.: Дрофа, 2017;
- Учебного плана МОУ СШ № 27.

Описание места предмета в учебном плане: Программой отводится на изучение химии 204 часов, которые распределены по классам следующим образом:

10 класс – 102 часа, 3 часа в неделю; 11 класс – 102 часа, 3 часа в неделю.

Количество контрольных работ:

В 10 классе – 4, в 11 классе – 4.

Количество практических работ:

в 10 классе -7, в 11 классе -10

Состав УМК:

- 1. Химия.10 класс. Углубленный уровень: учебник / В.В.Еремин, Н.Е.Кузьменко, В.И.Теренин, А.А.Дроздов,В.В.Лунин.-7изд. М.: Дрофа, 2020
- 2. Химия.11 класс. Углубленный уровень: / В.В.Еремин, Н.Е.Кузьменко, А.А.Дроздов,В.В.Лунин.-7изд. М.: Дрофа, 2020 Дополнительная литература, Интернет-ресурсы:
- 1. Кузьменко Н.Е., Еремин В.В., Попков В.А. Начала химии.
- 2. Кузьменко Н.Е., Еремин В.В., 2500 задач по химии
- 3. Л.М. Брейгер. Нестандартные уроки. Химия 8-11 классы. Волгоград: Учитель, 2002.
- 4. А.М.Радецкий, химия 10-11 класс, Дидактический материал, Москва, «Просвещение», 2018
- 5. М.Г. Снастина «Химия. Контрольные тестовые задания». ЭКСМО Москва 2009 г;
- 6. Н.В. Ширшина «Проектная деятельность учащихся», Волгоград, «Учитель», 2007 год.
- 7. А.Ю. Стахеев «Вся химия в 50 таблицах», М. 2019год.
- 8. ЕГЭ: шаг за шагом

Технические средства обучения: Компьютер, мультимедийный проектор.

Наглядные пособия: таблицы, информационно-коммуникативные средства, учебно-практическое и учебно-лабораторное оборудование

Общая характеристика курса химии в 10-11 классах

Одной из важнейших задач является подготовка учащихся к осознанному и ответственному выбору жизненного и профессионального пути. Учащиеся должны научиться самостоятельно ставить цели и определять пути их достижения, использовать приобретенный в школе опыт деятельности в реальной жизни, за рамками учебного процесса.

Цели изучения химии в средней школе:

- формирование умения видеть и понимать ценность образования, значимость химического знания для каждого человека, независимо от его профессиональной деятельности.
- формирование умения различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определенной системой ценностей, формулировать и обосновывать собственную позицию.
- формирование целостного представления о мире и роли химии в создании современной естественнонаучной картины мира; умения объяснять объекты и процессы окружающей действительности (природной, социальной, культурной, технической среды), используя для этого химические знания.
- приобретение опыта разнообразной деятельности, опыта познания и самопознания; ключевых навыков, имеющих универсальное значение для различных видов деятельности (навыков решения проблем, принятия решений, поиска, анализа и обработки информации, коммуникативных навыков, навыков измерений, навыков сотрудничества, навыков безопасного обращения с веществами в повседневной жизни).

Основными задачами являются:

- изучение состава и строения веществ, зависимости их свойств от строения;
- получение веществ с заданными свойствами;
- исследование закономерностей химических реакций и путей управления ими в целях получения необходимых человеку веществ, материалов, энергии.

Поэтому в программе по химии нашли отражение основные содержательные линии:

- «вещество» знания о составе и строении веществ, их важнейших физических и химических свойствах, биологическом действии;
- «химическая реакция» знания об условиях, в которых проявляются химические свойства веществ, способах управления химическими процессами;
- «применение веществ» знания и опыт практической деятельности с веществами, которые наиболее часто употребляются в повседневной
- «язык химии» система важнейших понятий химии и терминов, в которых они описываются, номенклатура неорганических и органических веществ, т. е. их названия (в том числе и тривиальные), химические формулы и уравнения, а также правила перевода информации с родного или русского языка на язык химии и обратно.

В результате изучения учебного предмета выпускник средней школы освоит содержание, способствующее формированию познавательной, нравственной и эстетической культуры. Учащийся овладеет системой химических знаний — понятиями, законами, теориями и языком науки как компонентами естественнонаучной картины мира. Все это позволит ему сформировать на основе системы полученных знаний научное мировоззрение как фундамент ценностного, нравственного отношения к природе, окружающему миру, своей жизни и здоровью, осознать роль химической науки в познании и преобразовании окружающего мира, выработать отношение к химии как возможной области будущей собственной практической деятельности. Усвоение содержания учебного предмета обеспечит выпускнику возможность совершенствовать и развивать познавательные возможности, умение управлять собственной познавательной деятельностью; интеллектуальные и рефлексивные

способности; применять основные интеллектуальные операции, такие как формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей для изучения свойств веществ и химических реакций; использовать различные источники для получения химической информации; самостоятельно планировать и организовывать учебнопознавательную деятельность; развивать исследовательские, коммуникативные и информационные умения. В учебниках реализуется системно-деятельностный подход, лежащий в основе ФГОС. Этот подход ориентирован на конкретные результаты образования, как системообразующий компонент стандарта, где развитие личности учащегося на основе усвоения универсальных учебных действий, познания и освоения мира составляет цель и основной результат образования. Изучение химии в 10 и 11 классах построено по линейной схеме. В 10 классе излагается материал органической химии, а в 11 классе — неорганическая химия, общая химия, химическая технология. Последние главы учебника 11 класса знакомят школьников с применением химии в окружающей жизни и на службе обществу. Систематический курс органической химии в 10 классе предваряет раздел, направленный на обобщение и повторение полученных в основной школе знаний. В нем также даются те сведения из общей и неорганической химии, которые необходимы для изучения органической химии, но не вошли в программу основной школы. Курс органической химии построен традиционно. Он начинается с основных понятий органической химии, затем излагается структурная теория органических соединений, рассматривается их электронное строение. Потом изучаются важнейшие классы органических соединений: углеводороды, кислородсодержащие соединения, азот- и серосодержащие соединения. Систематическое изложение строения и свойств органических соединений позволяет перейти к биологически активным веществам — углеводам, жирам, белкам и нуклеиновым кислотам. Заканчивается курс органической химии рассказом о полимерах и их использовании в быту и в технике. Материал по неорганической химии в 11 классе изучается в следующей последовательности. Сначала рассмотрены элементы-неметаллы, затем элементыметаллы. Изучение элементов-металлов предваряет раздел, систематизирующий общие свойства металлов — элементов и простых веществ, а также рассказывающий о сплавах. Рассмотрение общей химии начинается со строения атома и химической связи. На основе полученных знаний школьники знакомятся со строением вещества, изучают различные виды химической связи, включая межмолекулярные, и основные типы кристаллических решеток простых веществ и ионных соединений. Затем следует материал, рассказывающий о закономерностях протекания химических реакций. Здесь сочетаются сведения из химической термодинамики и химической кинетики, позволяющие понять, почему и как протекают химические реакции. Следующая тема курса иллюстрирует применение полученных знаний о закономерностях протекания химических реакций на практике. Речь идет о различных типах химических производств. Обсуждая общие принципы химической технологии и рассматривая конкретные производства, авторы не забывают и о проблеме охраны окружающей среды, знакомят школьников с новым подходом в практическом применении химических знаний — «зеленой» химией. Изучение школьного курса химии завершается рассказом о применении химических знаний в различных областях науки и техники. Авторский коллектив постарался показать важность полученных знаний и в повседневной жизни. Авторы стремятся привить учащимся бережное отношение к природе и к окружающему миру, сформировать химический взгляд на все, что их окружает, — от продуктов питания до материалов для живописи и скульптуры

Планируемые результаты освоения учебного предмета

Федеральный государственный образовательный стандарт среднего общего образования устанавливает следующие требования к результатам освоения обучающимися основной образовательной программы: к личностным результатам освоения основной образовательной программы:

- 1) в сфере отношений обучающихся к себе, к своему здоровью, к познанию себя: принятие и реализацию ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью; неприятие вредных привычек: курения, употребления алкоголя, наркотиков;
- 2) в сфере отношений обучающихся к окружающему миру, к живой природе, художественной культуре: мировоззрение, соответствующее современному уровню развития науки, значимость науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества; готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности; экологическая культура, бережное отношение к родной земле, природным богатствам России и мира, понимание влияния социально-экономических процессов на состояние природной и социальной среды, ответственности за состояние природных ресурсов, умений и навыков разумного природопользования, нетерпимого отношения к действиям, приносящим вред экологии; приобретение опыта экологонаправленной деятельности;
- 3) в сфере отношений обучающихся к труду, в сфере социально-экономических отношений: осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов; готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем; потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение к разным видам трудовой деятельности.

к метапредметным результатам освоения основной образовательной программы:

- регулятивные универсальные учебные действия:

выпускник научится:

- самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной ранее цели;
- сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;
- организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
- определять несколько путей достижения поставленной цели;
- выбирать оптимальный путь достижения цели с учетом эффективности расходования ресурсов и основываясь на соображениях этики и морали;
- задавать параметры и критерии, по которым можно определить, что цель достигнута;
- сопоставлять полученный результат деятельности с поставленной заранее целью;
- оценивать последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей. познавательные универсальные учебные действия:

выпускник научится:

- критически оценивать и интерпретировать информацию с разных позиций;
- распознавать и фиксировать противоречия в информационных источниках;

- использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий;
- осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- искать и находить обобщенные способы решения задач;
- приводить критические аргументы, как в отношении собственного суждения, так и в отношении действий и суждений другого;
- анализировать и преобразовывать проблемно-противоречивые ситуации;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
- менять и удерживать разные позиции в познавательной деятельности (быть учеником и учителем; формулировать образовательный запрос и выполнять консультативные функции самостоятельно; ставить проблему и работать над ее решением; управлять совместной познавательной деятельностью и подчиняться).
- коммуникативные универсальные учебные действия:

выпускник научится:

- осуществлять деловую коммуникацию, как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами);
- при осуществлении групповой работы быть как руководителем, так и членом проектной команды в разных ролях (генератором идей, критиком, исполнителем, презентующим и т. д.);
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств; распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы;
- координировать и выполнять работу в условиях виртуального взаимодействия (или сочетания реального и виртуального);
- согласовывать позиции членов команды в процессе работы над общим продуктом/решением;
- представлять публично результаты индивидуальной и групповой деятельности, как перед знакомой, так и перед незнакомой аудиторией;
- подбирать партнеров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не личных симпатий;
- воспринимать критические замечания как ресурс собственного развития;
- точно и емко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

к предметным результатам освоения учебного предмета на углубленном уровне:

10 класс выпускник на углубленном уровне научится:

- раскрывать на примерах роль химии в формировании современной научной картины мира и в практической деятельности человека, взаимосвязь между химией и другими естественными науками;
- анализировать состав, строение и свойства веществ, применяя положения основных химических теорий: химического строения органических соединений А. М. Бутлерова, строения атома, химической связи, а также устанавливать причинно-следственные связи между свойствами вещества и его составом и строением;

- применять правила систематической международной номенклатуры как средства различения и идентификации веществ по их составу и строению;
- составлять молекулярные и структурные формулы органических веществ как носителей информации о строении вещества, его свойствах и принадлежности к определенному классу соединений;
- объяснять природу и способы образования химической связи: водородной с целью определения химической активности веществ; характеризовать физические свойства органических веществ;
- приводить примеры химических реакций, раскрывающих характерные химические свойства органических веществ изученных классов с целью их идентификации и объяснения области применения;
- определять механизм реакции в зависимости от условий проведения реакции и прогнозировать возможность протекания химических реакций на основе типа химической связи и активности реагентов;
- устанавливать зависимость реакционной способности органических соединений от характера взаимного влияния атомов в молекулах с целью прогнозирования продуктов реакции;
- устанавливать генетическую связь между классами органических веществ для обоснования принципиальной возможности получения органических соединений заданного состава и строения;
- подбирать реагенты, условия и определять продукты реакций, позволяющих реализовать лабораторные и промышленные способы получения важнейших органических веществ;
- определять характер среды в результате гидролиза органических веществ и приводить примеры гидролиза веществ в повседневной жизни человека, биологических обменных процессах;
- обосновывать практическое использование органических веществ и их реакций в промышленности и быту;
- выполнять химический эксперимент по распознаванию и получению органических веществ, относящихся к различным классам соединений, в соответствии с правилами и приемами безопасной работы с химическими веществами и лабораторным оборудованием;
- проводить расчеты на основе химических формул и уравнений реакций: нахождение молекулярной формулы органического вещества по его плотности и массовым долям элементов, входящих в его состав или по продуктам сгорания; расчеты массовой доли (массы) химического соединения в смеси; расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси); расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного; расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества;
- использовать методы научного познания: анализ, синтез, моделирование химических процессов и явлений при решении учебно-исследовательских задач по изучению свойств, способов получения и распознавания органических веществ;
- осуществлять поиск химической информации по названиям, идентификаторам, структурным формулам веществ.

11 класс Выпускник на углубленном уровне научится:

- сопоставлять исторические вехи развития химии с историческими периодами развития промышленности и науки для проведения анализа состояния, путей развития науки и технологий;
- анализировать состав, строение и свойства веществ, строения атома, химической связи, электролитической диссоциации кислот, оснований и солей, а также устанавливать причинно-следственные связи между свойствами вещества и его составом и строением;

- применять правила систематической международной номенклатуры как средства различения и идентификации веществ по их составу и строению;
- составлять молекулярные и структурные формулы неорганических веществ как носителей информации о строении вещества, его свойствах и принадлежности к определенному классу соединений;
- объяснять природу и способы образования химической связи: ковалентной (полярной, неполярной), ионной, металлической с целью определения химической активности веществ;
- характеризовать физические свойства неорганических веществ и устанавливать зависимость физических свойств веществ от типа кристаллической решетки;
- характеризовать закономерности в изменении химических свойств простых веществ, водородных соединений, высших оксидов и гидроксидов;
- приводить примеры химических реакций, раскрывающих характерные химические свойства неорганических веществ изученных классов с целью их идентификации и объяснения области применения;
- определять механизм реакции в зависимости от условий проведения реакции и прогнозировать возможность протекания химических реакций на основе типа химической связи и активности реагентов;
- устанавливать зависимость скорости химической реакции и смещения химического равновесия от различных факторов с целью определения оптимальных условий протекания химических процессов;
- устанавливать генетическую связь между классами неорганических веществ для обоснования принципиальной возможности получения неорганических соединений заданного состава и строения;
- подбирать реагенты, условия и определять продукты реакций, позволяющих реализовать лабораторные и промышленные способы получения важнейших неорганических веществ;
- определять характер среды в результате гидролиза неорганических веществ и приводить примеры гидролиза веществ в промышленности;
- приводить примеры окислительно-восстановительных реакций в природе, производственных процессах и жизнедеятельности организмов;
- обосновывать практическое использование неорганических веществ и их реакций в промышленности и быту;
- выполнять химический эксперимент по распознаванию и получению неорганических веществ, относящихся к различным классам соединений, в соответствии с правилами и приемами безопасной работы с химическими веществами и лабораторным оборудованием;
- проводить расчеты массовой доли (массы) химического соединения в смеси; расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси); расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного; расчеты теплового эффекта реакции; расчеты объемных отношений газов при химических реакциях; расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества;
- использовать методы научного познания: анализ, синтез, моделирование химических процессов и явлений при решении учебно-исследовательских задач по изучению свойств, способов получения и распознавания неорганических веществ;
- владеть правилами безопасного обращения с едкими, горючими и токсичными веществами, средствами бытовой химии;
- осуществлять поиск химической информации по названиям, идентификаторам, структурным формулам веществ;

- критически оценивать и интерпретировать химическую информацию, содержащуюся в сообщениях средств массовой информации, ресурсах Интернета, научно-популярных статьях с точки зрения естественно-научной корректности в целях выявления ошибочных суждений и формирования собственной позиции;
- находить взаимосвязи между структурой и функцией, причиной и следствием, теорией и фактами при анализе проблемных ситуаций и обосновании принимаемых решений на основе химических знаний;
- представлять пути решения глобальных проблем, стоящих перед человечеством, и перспективных направлений развития химических технологий, в том числе технологий современных материалов с различной функциональностью, возобновляемых источников сырья, переработки и утилизации промышленных и бытовых отходов.

Выпускник на углубленном уровне получит возможность научиться:

- формулировать цель исследования, выдвигать и проверять экспериментально гипотезы о химических свойствах веществ на основе их состава и строения, их способности вступать в химические реакции, о характере и продуктах различных химических реакций;
- самостоятельно планировать и проводить химические эксперименты с соблюдением правил безопасной работы с веществами и лабораторным оборудованием;
- интерпретировать данные о составе и строении веществ, полученные с помощью современных физико-химических методов; описывать состояние электрона в атоме на основе современных квантовомеханических представлений о строении атома для объяснения результатов спектрального анализа веществ;
- характеризовать роль азотосодержащих гетероциклических соединений и нуклеиновых кислот как важнейших биологически активных веществ; прогнозировать возможность протекания окислительно-восстановительных реакций, лежащих в основе природных и производственных процессов.

Критерии и нормы оценки знаний, умений и навыков обучающихся по химии

1. Оценка устного ответа

Отметка «5»:

- ответ полный и правильный на основании изученных теорий;
- материал изложен в определенной логической последовательности, литературным языком;
- ответ самостоятельный.

Ответ «4»;

- ответ полный и правильный на сновании изученных теорий;
- материал изложен в определенной логической последовательности, при этом допущены две-три несущественные ошибки, исправленные по требованию учителя.

Отметка «З»:

- ответ полный, но при этом допущена существенная ошибка или ответ неполный, несвязный.

Отметка «2»:

- при ответе обнаружено непонимание учащимся основного содержания учебного материала или допущены существенные ошибки, которые учащийся не может исправить при наводящих вопросах учителя, отсутствие ответа.

2. Оценка умений решать расчетные задачи

Отметка «5»:

- в логическом рассуждении и решении нет ошибок, задача решена рациональным способом;

Отметка «4»:

- в логическом рассуждении и решения нет существенных ошибок, но задача решена нерациональным способом, или допущено не более двух несущественных ошибок.

Отметка «3»:

- в логическом рассуждении нет существенных ошибок, но допущена существенная ошибка в математических расчетах.

Отметка «2»:

- имеется существенные ошибки в логическом рассуждении и в решении;
- отсутствие ответа на задание.

3. Оценка экспериментальных умений

Оценка ставится на основании наблюдения за учащимися и письменного отчета за работу.

Отметка «5»:

- работа выполнена полностью и правильно, сделаны правильные наблюдения и выводы;
- эксперимент осуществлен по плану с учетом техники безопасности и правил работы с веществами и оборудованием;
- проявлены организационно трудовые умения, поддерживаются чистота рабочего места и порядок (на столе, экономно используются реактивы).

Отметка «4»:

- работа выполнена правильно, сделаны правильные наблюдения и выводы, но при этом эксперимент проведен не полностью или допущены несущественные ошибки в работе с веществами и оборудованием.

Отметка «3»:

- работа выполнена правильно не менее чем наполовину или допущена существенная ошибка в ходе эксперимента в объяснении, в оформлении работы, в соблюдении правил техники безопасности на работе с веществами и оборудованием, которая исправляется по требованию учителя.

Отметка «2»:

- допущены две (и более) существенные ошибки в ходе: эксперимента, в объяснении, в оформлении работы, в соблюдении правил техники безопасности при работе с веществами и оборудованием, которые учащийся не может исправить даже по требованию учителя;
 - работа не выполнена, у учащегося отсутствует экспериментальные умения.

4. Оценка реферата.

Реферат оценивается по следующим критериям:

- соблюдение требований к его оформлению;
- необходимость и достаточность для раскрытия темы приведенной в тексте реферата информации;
- умение обучающегося свободно излагать основные идеи, отраженные в реферате;

• способность обучающегося понять суть задаваемых членами аттестационной комиссии вопросов и сформулировать точные ответы на них.

5. Оценка письменных контрольных работ

Отметка «5»:

- ответ полный и правильный, возможна несущественная ошибка.

Отметка «4»:

- ответ неполный или допущено не более двух несущественных ошибок.

Отметка «3»:

- работа выполнена не менее чем наполовину, допущена одна существенная ошибка и при этом две-три несущественные.

Отметка «2»:

- работа выполнена меньше чем наполовину или содержит несколько существенных ошибок;
- работа не выполнена.

При оценке выполнения письменной контрольной работы необходимо учитывать требования единого орфографического режима.

6. Оценка тестовых работ

Тесты, состоящие из пяти вопросов можно использовать после изучения каждого материала (урока). Тест из 10-15 вопросов используется для периодического контроля. Тест из 20-30 вопросов необходимо использовать для итогового контроля.

При оценивании используется следующая шкала:

для теста из пяти вопросов

- нет ошибок оценка «5»;
- одна ошибка оценка «4»;
- две ошибки оценка «З»;
- три ошибки оценка «2».

Для теста из 30 вопросов:

- 25-30 правильных ответов оценка «5»;
- 19-24 правильных ответов оценка «4»;
- 13-18 правильных ответов оценка «З»;
- меньше 12 правильных ответов оценка «2».

Содержание учебного предмета 10 класс

№	Название глав/модулей	Количе	Содержание учебного раздела	Практически	е работы
		ство		$(\Pi/p),$	
		часов		Проверочные	е работы (П),
				тесты (Т),	контрольные
				работы	(K/p),
				реферативны	ie,

Про Про	равнениям П Классификация хр	по
1 Глава 1. Повторение и углубление знаний Атомно-молекулярное учение. Вещества молекулярного и немолекулярного строения. Качественный и количественный состав немолекулярная и относительная молекулярная массы вещества. Иольная доля и массовая доля элемента в веществе. Строение атома. Т1 I	ПСХЭРасчеты гравнениямКлассификация хрКлас Клас Клас Клас Клас Клас Клас Клас	по
углубление знаний немолекулярного строения. Качественный и количественный состав вещества. Молярная и относительная молекулярная массы вещества. ураз Мольная доля и массовая доля элемента в веществе. Строение атома. Т1 I	12 Расчеты гравнениям Г1 Классификация хр 13 Клас Клас неорганических веществ 14 Гидролиз	ссы
Применение радиоактивных нуклидов в геохронологии. Современная Модель строения атома. Корпускулярноволновые свойства электрона. К/Р	углубление»	И

	1			
			решеток: атомная, молекулярная, ионная, металлическая. Понятие об	
			элементарной ячейке. Зависимость физических свойств вещества от	
			типа кристаллической решетки. Причины многообразия веществ.	
			Современные представления о строении твердых, жидких и	
			газообразных веществ.	
2	Глава 2. Основные	13	Предмет органической химии. Особенности органических веществ.	П6 Решение задач
	понятия органической		Значение органической химии. Причины многообразия органических	Т2 Изомерия
	химии		веществ. Углеродный скелет, его типы: циклические, ациклические.	П7 Изомерия
			Карбоциклические и гетероциклические скелеты. Виды связей в	П8 Основные понятия
			молекулах органических веществ: одинарные, двойные, тройные.	органической химии
			Изменение энергии связей между атомами углерода при увеличении	· F · · · · · · · · · · · · · · · · · ·
			кратности связи. Насыщенные и ненасыщенные соединения.	
			Электронное строение и химические связи атома углерода.	
			Гибридизация орбиталей, ее типы для органических соединений: sp3,	
			sp2, sp. Образование V- и S-связей в молекулах органических	
			соединений.	
			Основные положения структурной теории органических соединений.	
			Химическое строение. Структурная формула. Структурная и	
			пространственная изомерия. Изомерия углеродного скелета. Изомерия	
			положения. Межклассовая изомерия. Виды пространственной	
			изомерии. Оптическая изомерия. Оптические антиподы. Хиральность.	
			Хиральные и ахиральные молекулы. Геометрическая изомерия (цис-,	
			транс-изомерия). Гомология. Гомологи. Гомологическая разность.	
			Гомологические ряды. Электронные эффекты. Способы записей	
			реакций в органической химии. Схема и уравнение. Условия	
			проведения реакций. Классификация реакций органических веществ по	
			структурному признаку: замещение, присоединение, отщепление.	
			Механизмы реакций. Способы разрыва связи углерод-углерод.	
			Свободные радикалы, нуклеофилы и электрофилы.	
			Классификация органических веществ и реакций. Основные классы	
			органических соединений. Классификация органических соединений по	
			функциональным группам. Электронное строение органических	
			веществ. Взаимное влияние атомов и групп атомов. Индуктивный и	
			мезомерный эффекты. Представление о резонансе. Номенклатура	
			органических веществ. Международная (систематическая)	

номенклатура органических веществ, ее принципы. Рациональная номенклатура. Окисление и восстановление в органической химии. 3		
 7 Плава 3. Углеводороды 25 Алканы Б. Строение молекулы метана. Понятие о конформациях. Общая характеристика класса, физические и химические свойства (горение, каталитическое окисление, галогенирование, штрование, моделей углеводородов» природе. Синтетические способы получения алканов. Методы получения даканов. Методы получения даканов. Методы получения даканов. И к л о а л к а н ы. Общая характеристика класса, физические свойства Выры дакарбоксилированием солей карбоновых кислот и электролизом растворов солей карбоновых кислот Применение алканов. Ц к л о а л к а н ы. Общая характеристика класса, физические свойства Выды изомерии. Напряженные и ненапряженные присосдинение галогенов, галогеново дородов, в оды) и циклогексана (горение, хлорирование, питрование). Получение циклоалканов из алканов и дигалогенавланов. Алкены даталические свойства алкенов. Геометрическая изомерия алкенов. Химические свойства алкенов. Геометрическая изомерия алкенов. Торение, кислором в газовой фазе или на свету. Окисление алкенов (горение, окисление кислородом в присутствии хлорида палиадия, под действием серебра, окисление горячим подкисленным раствором перманганата капия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкалталогенидов и дигалогеналканов. Применение этллена и пропилства. Алка д н е н ы. Классификация диеновых углеводородов. Сопряженные диспы. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этаноза. 		
Общая характеристика класса, физические и химические свойства (горение, каталитическое окисление, галогенирование, нитрование, крскипг, пиролиз). Мехапизм реакции хлорирования метапа. Алкапы в природе. Синтетические способы получения алканов. Методы получения алканов из апкилталогенидов (реакция Вюрца), декарбоксипированием солей карбоновых кислот и электролизом растворов солей карбоновых кислот и электролизом и опыть с ним» та а и в и общата класса, физические свойства. Виды изомерии. Напряженные и ненапряженные циклы. Химические свойства циклопропапа (горение, гидрирование, присосдинение галогенов, галогеноводородов, воды) и циклогексана (горение, хлорирование, нитрование). Получение циклоалканов из алканов и диталогеналканов. А л к с н ы. Общая характеристика класса. Строение молекулы этилена. Физические свойства алкенов. Геометрическая изомерия алкенов. Химические свойства алкенов. Реакции присосдинение по кратной связи — гидрирование, галогенирование, гидрогалогенирование, гидратация. Правило Марковникова и сто объяснение с точки зрения электропной теории. Взаимодействие алкенов (торение, окисление кислородом в присутствии хлорида палладия, под действием серебра, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкили алогения подкисленным раствором перманганата калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкили алогения подкисленным раствором перманганата калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкили алогения подкисленным раствором перманганата калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкили алогена день. Мизические свойства дввинила и иропилсена. А л к а д и е н ы. Классификация диеновых углеводородов. Сопряженные диены. Физические свойства дввинила и изопрена. 1,2- и 1,4-присосдиение. Полимеризация бутана и этанола.		
(горение, каталитическое окисление, галогенирование, нитрование, крекинг, пиролиз). Механизм реакции хлорирования метана. Алканы в природе. Синтетические способы получения алканов из алкилгалогенидов (реакция Вюрца), декарбоксилированием солей карбоновых кислот и электролизом растворов солей карбоновых кислот и электролизом к а н ы. Общая характеристика класса, физические свойства. Виды изомерии. Напряженные и ненапряженные циклы. Химические свойства циклопропана (горение, гидрирование, присоединение галогенов, галогеноводородов, воды) и циклогксеапа (горение, хлорирование, нитрование). Получение циклоалканов из алканов и дигалогеналканов. А л к е н ы. Общая характеристика класса. Строение молекулы этилена. Физические свойства алкенов. Геометрическая изомерия алкенов. Химические свойства алкенов. Реакции присоединения по кратной связи — гидрирование, галогенирование, гидрогалогенирование, гидратация. Правило Марковникова и его объяснение с точки зрения электронной геории. Взаимодействие алкенов с бромом и хлором в газовой фазе или на свету. Окисление алкенов прорине алкенов с комеление кислородом в присутствии хлорида палладия, под действием серебра, окисление горячим подкисленным раствором перманганта калия, окисление горячим подкисленным раствором перманганта калия, окисление горячим подкисленным раствором перманганта калия, окисление по Ватнеру). Полимеризация. Получение алкенов из алканов, алкилталогенидов и дигалогеналканов. Применение этилена и пропилена. А л к а д и с п ы. Классификация дисповых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация к бутана и этанола.		
крекинг, пиролиз). Механизм реакции хлорирования метана. Алканы в природе. Синтетические способы получения алканов. Методы Плрамения алканов из алкилгалогенидов (реакция Вюрца), декарбоксилированием солей карбоновых кислот и электролизом растворов солей карбоновых кислот. Применение алканов. Ц и к л о а л к а п ы. Общая характеристика класса, физические свойства. Виды изомерии. Напряженные и ненапряженные циклы. Химические свойства циклопропана (горение, гидрирование, присоединение галогенов, галогеноводородов, воды) и циклогексана (горение, хлорирование, нитрование). Получение циклоалканов из алканов и дигалогеналканов. А л к е н ы. Общая характеристика класса. Строение молекулы этилена. Физические свойства алкенов. Геометрическая изомерия алкенов. Химические свойства алкенов. Реакции присоединения по кратной связи — гидрирование, галогенирование, гидрогалогенирование, гидратация. Правило Марковникова и сто объяснение с точки эрения электронной теории. Взаимодействие алкенов (горение, окисление кислородом в присутствии хлорида палладия, под действием серебра, окисление по Ватнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена. А л к а л и е н ы. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадисна из бутана и этанола.		молекул
природе. Сиптетические способы получения алканов. Методы получения алканов из алкилгалогенидов (реакция Вюрца), декарбоксипрованием солей карбоновых кислот и электролизом растворов солей карбоновых кислот. Применение алканов.Ц и к л о а л к а н ы. Общая характеристика класса, физические свойства. Виды изомерии. Напряженные и ненапряженные циклы. Химические свойства циклопропапа (горспие, гидрировапие, присосдинспие галогенов, галогеноводородов, воды) и циклогексана (горение, хлорирование, нитрование). Получение циклоалканов из алканов и дигалогеналканов. А л к е н ы. Общая характеристика класса. Строение молекулы этилена. Физические свойства алкенов. Геометрическая изомерия алкенов. Химические свойства алкенов. Реакции присосдинспия по кратпой связи — гидрирование, галогенирование, гидрогалогенирование, гидратация. Правило Марковникова и его объяснение с точки зрения электронной теории. Взаимодействие алкенов с бромом и хлором в газовой фазе или на свету. Окисление алкенов (горение, окисление кислородом в присутствии хлорида палиадия, под действием серебра, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена. А л к а д и е н ы. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрепа. 1,2- и 1,4-присосдинсние. Полимеризация.Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.		MOJICKYJI
получения алканов из алкилгалогенидов (реакция Вюрца), декарбоксилированием солей карбоновых кислот и электролизом растворов солей карбоновых кислот и электролизом товьты с ним» к а н ы. Общая характеристика класса, физические свойства. Виды изомерии. Напряженные и ненапряженные циклы. Химические свойства циклопропана (горение, гидрирование, присоединение галогенов, галогеноводородов, воды) и циклогексана (горение, хлорирование, питрование). Получение циклоалканов из алканов и дигалогеналканов. А л к е н ы. Общая характеристика класса. Строение молекулы этилена. Физические свойства алкенов. Геометрическая изомерия алкенов. Химические свойства алкенов. Реакции присоединения по кратной связи — гидрирование, галогенирование, гидрогалогенирование, гидратация. Правило Марковникова и его объяснение с точки зрения электронной теории. Взаимодействие алкенов (горение, окисление кислородом в присутствии хлорида палладия, под действием серебра, окисление горячим подкисленным раствором пермантаната калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена. А л к а д и е п ы. Классификация дисновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединене. Полимеризация.Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадисна из бутана и этанола.		TT T
декарбоксилированием солей карбоновых кислот и электрогизом растворов солей карбоновых кислот. Применение алканов. Ц и к л о а л к а и ы. Общая характеристика класса, физические свойства. Виды изомерии. Напряженные и ненапряженные циклы. Химические палогенов, галогеноводородов, воды) и циклогексана (горение, хлорирование, питрование). Получение циклоалканов из алканов и дигалогеналканов. А л к е и ы. Общая характеристика класса. Строение молекулы этилена. Физические свойства алкенов. Геометрическая изомерия алкенов. Химические свойства алкенов. Геометрическая изомерия алкенов. Химические свойства алкенов. Реакции присоединения по кратной связи — гидрирование, галогенирование, гидрогалогенирование, гидратация. Правило Марковникова и его объяснение с точки зрения электронной теории. Взаимодействие алкенов с бромом и хлором в газовой фазе или па свету. Окислепие алкенов (горение, окисление кислородом в присутетвии хлороида палладия, под действием серебра, окисление горячим подкисленным раствором перманганата калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена. А л к а д и е н ы. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.		
растворов солей карбоновых кислот. Применение алканов. Ц и к л о а л к а н ы. Общая характеристика класса, физические свойства. Виды изомерии. Напряженные и ненапряженные циклы. Химические свойства циклопропана (горение, гидрирование, присосдинение галогенов, галогеноводородов, воды) и циклогексана (горение, хлорирование, нитрование). Получение циклоалканов из алканов и дигалогеналканов. А л к е н ы. Общая характеристика класса. Строение молекулы этилена. Физические свойства алкенов. Геометрическая изомерия алкенов. Химические свойства алкенов. Реакции присосдинения по кратной связи — гидрирование, гидрирование, гидратация. Правило Марковникова и его объяснение с точки зрения электронной теории. Взаимодействие алкенов (горение, окисление кислородом в присутствии хлорида палладия, под действием серебра, окисление горячим подкисленным раствором пермантаната калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилталогенидов и дигалогеналканов. Применение этилена и пропилена. А л к а д и е н ы. Классификация дненовых углеводородов. Сопряженные днены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присосдинение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.	•	ЭТИЛСНа
к а н ы. Общая характеристика класса, физические свойства. Виды изомерии. Напряженные и ненапряженные циклы. Химические свойства циклопропана (горение, гидрирование, присоединение галогенов, галогеноводородов, воды) и циклогексана (горение, хлорирование, нитрование). Получение циклоалканов из алканов и дигалогеналканов. Алкены Общая характеристика класса. Строение молекулы этилена. Физические свойства алкенов. Геометрическая изомерия алкенов. Химические свойства алкенов. Реакции присоединения по кратной связи — гидрирование, галогенирование, гидрогалогенирование, гидратация. Правило Марковникова и его объяснение с точки зрения электронной теории. Взаимодействие алкенов с бромом и хлором в газовой фазе или на свету. Окисление алкенов (горение, окисление кислородом в присутствии хлорида палладия, под действием серебра, окисление горячим подкисленным раствором перманганата калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена. Алкадием и ди ены Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.		OHIOHI
изомерии. Напряженные и ненапряженые циклы. Химические свойства циклопропана (горение, гидрирование, присоединение галогенов, галогеноводородов, воды) и циклогексана (горение, хлорирование, нитрование). Получение циклоалканов из алканов и дигалогеналканов. А л к е н ы. Общая характеристика класса. Строение молекулы этилена. Физические свойства алкенов. Геометрическая изомерия алкенов. Химические свойства алкенов. Реакции присоединения по кратной связи — гидрирование, галогенирование, гидрогалогенирование, гидратация. Правило Марковникова и его объяснение с точки зрения электронной теории. Взаимодействие алкенов (горение, окисление кислородом в присутствии хлорида палладия, под действием серебра, окисление горячим подкисленным раствором перманганата калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена. А л к а д и е н ы. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация.Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.	ханы,	алкены,
свойства циклопропана (горение, гидрирование, присоединение галогенов, галогеноводородов, воды) и циклогексана (горение, хлорирование, нитрование). Получение циклоалканов из алканов и дигалогеналканов. Алкены Общая характеристика класса. Строение молекулы этилена. Физические свойства алкенов. Геометрическая изомерия алкенов. Химические свойства алкенов. Реакции присоединения по кратной связи — гидрирование, галогенирование, гидрогалогенирование, гидратация. Правило Марковникова и его объяснение с точки зрения электронной теории. Взаимодействие алкенов с бромом и хлором в газовой фазе или на свету. Окисление алкенов (горение, окисление кислородом в присутствии хлорида палладия, под действием серебра, окисление горячим подкисленным раствором пермантаната калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена. Алкадиеные диены. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.	HILOOKOA (nn got
галогенов, галогеноводородов, воды) и циклогексана (горение, клорирование, нитрование). Получение циклоалканов из алканов и диталогеналканов. А л к е н ы. Общая характеристика класса. Строение молекулы этилена. Физические свойства алкенов. Геометрическая изомерия алкенов. Химические свойства алкенов. Реакции присоединения по кратной связи — гидрирование, галогенирование, гидрогалогенирование, гидратация. Правило Марковникова и его объяснение с точки зрения электронной теории. Взаимодействие алкенов с бромом и хлором в газовой фазе или на свету. Окисление алкенов (горение, окисление кислородом в присутствии хлорида палладия, под действием серебра, окисление горячим подкисленным раствором перманганата калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена. А л к а д и е н ы. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация.Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.		
хлорирование, нитрование). Получение циклоалканов из алканов и дигалогеналканов. Алкены. Общая характеристика класса. Строение молекулы этилена. Физические свойства алкенов. Геометрическая изомерия алкенов. Химические свойства алкенов. Реакции присоединения по кратной связи — гидрирование, галогенирование, гидрогалогенирование, гидратация. Правило Марковникова и его объяснение с точки зрения электронной теории. Взаимодействие алкенов с бромом и хлором в газовой фазе или на свету. Окисление алкенов (горение, окисление кислородом в присутствии хлорида палладия, под действием серебра, окисление горячим подкисленным раствором перманганата калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена. Алкади и ены. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.	сводород	ĮЫ <i>//</i>
дигалогеналканов. Алкены. Общая характеристика класса. Строение молекулы этилена. Физические свойства алкенов. Геометрическая изомерия алкенов. Химические свойства алкенов. Реакции присоединения по кратной связи — гидрирование, галогенирование, гидрогалогенирование, гидратация. Правило Марковникова и его объяснение с точки зрения электронной теории. Взаимодействие алкенов с бромом и хлором в газовой фазе или на свету. Окисление алкенов (горение, окисление кислородом в присутствии хлорида палладия, под действием серебра, окисление горячим подкисленным раствором перманганата калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена. Алкадигалогенидов и дигалогеналканов. Применение отилена и пропилена. Алкадиненые диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бугадиена из бутана и этанола.		
Ал к е н ы. Общая характеристика класса. Строение молекулы этилена. Физические свойства алкенов. Геометрическая изомерия алкенов. Химические свойства алкенов. Реакции присоединения по кратной связи — гидрирование, галогенирование, гидрогалогенирование, гидратация. Правило Марковникова и его объяснение с точки зрения электронной теории. Взаимодействие алкенов с бромом и хлором в газовой фазе или на свету. Окисление алкенов (горение, окисление кислородом в присутствии хлорида палладия, под действием серебра, окисление горячим подкисленным раствором перманганата калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена. Ал к ад и е н ы. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.		
Физические свойства алкенов. Геометрическая изомерия алкенов. Химические свойства алкенов. Реакции присоединения по кратной связи — гидрирование, галогенирование, гидрогалогенирование, гидратация. Правило Марковникова и его объяснение с точки зрения электронной теории. Взаимодействие алкенов с бромом и хлором в газовой фазе или на свету. Окисление алкенов (горение, окисление кислородом в присутствии хлорида палладия, под действием серебра, окисление горячим подкисленным раствором перманганата калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена. Алкадие и нь. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.		
Химические свойства алкенов. Реакции присоединения по кратной связи — гидрирование, галогенирование, гидрогалогенирование, гидратация. Правило Марковникова и его объяснение с точки зрения электронной теории. Взаимодействие алкенов с бромом и хлором в газовой фазе или на свету. Окисление алкенов (горение, окисление кислородом в присутствии хлорида палладия, под действием серебра, окисление горячим подкисленным раствором перманганата калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена. Алкадия с ны. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.		
связи — гидрирование, галогенирование, гидрогалогенирование, гидратация. Правило Марковникова и его объяснение с точки зрения электронной теории. Взаимодействие алкенов с бромом и хлором в газовой фазе или на свету. Окисление алкенов (горение, окисление кислородом в присутствии хлорида палладия, под действием серебра, окисление горячим подкисленным раствором перманганата калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена. Алкадиена. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.		
гидратация. Правило Марковникова и его объяснение с точки зрения электронной теории. Взаимодействие алкенов с бромом и хлором в газовой фазе или на свету. Окисление алкенов (горение, окисление кислородом в присутствии хлорида палладия, под действием серебра, окисление горячим подкисленым раствором перманганата калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена. Алкадия и ены. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.		
электронной теории. Взаимодействие алкенов с бромом и хлором в газовой фазе или на свету. Окисление алкенов (горение, окисление кислородом в присутствии хлорида палладия, под действием серебра, окисление горячим подкисленным раствором перманганата калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена. Алкадиена диены. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.		
газовой фазе или на свету. Окисление алкенов (горение, окисление кислородом в присутствии хлорида палладия, под действием серебра, окисление горячим подкисленным раствором перманганата калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена. Алкадиена. Алкадиена. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.		
кислородом в присутствии хлорида палладия, под действием серебра, окисление горячим подкисленным раствором перманганата калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена. А л к а д и е н ы. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.		
окисление горячим подкисленным раствором перманганата калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена. А л к а д и е н ы. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация.Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бугадиена из бутана и этанола.		
окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена. Алкадиены. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.		
алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена. Алкадиены. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.		
пропилена. Алкадиены. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.		
Алкадиены. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.		
Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.		
изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.		
Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.		
этанола.		
Тарити на при на		
Физические и химические свойства алкинов. Реакции присоединения		

			димеризация ацетилена. Кислотные свойства алкинов с концевой		
			тройной связью. Ацетилиды. Окисление алкинов раствором		
			перманганата калия. Применение ацетилена. Карбидный метод		
			получения ацетилена. Пиролиз метана. Синтез алкинов алкилированием		
			ацетилидов.		
			А р е н ы. Понятие об ароматичности. Правило Хюккеля.Бензол —		
			строение молекулы, физические свойства. Гомологический ряд бензола.		
			Изомерия дизамещенных бензолов на примере ксилолов. Реакции		
			замещения в бензольном ядре (галогенирование, нитрование,		
			алкилирование). Реакции присоединения к бензолу (гидрирование,		
			хлорирование на свету).		
			Особенности химии алкилбензолов. Правила ориентации заместителей		
			в реакциях замещения. Бромирование и нитрование толуола. Окисление		
			алкилбензолов раствором перманганата калия. Галогенирование		
			алкилбензолов в боковую цепь. Реакция Вюрца—Фиттига как метод		
			синтеза алкилбензолов. Стирол как пример непредельного		
			ароматического соединения.		
			Природные источники углеводородов. Природный и		
			попутный нефтяные газы, их состав, использование. Нефть как смесь		
			углеводородов. Первичная и вторичная переработка нефти. Риформинг.		
			Каменный уголь.		
			Генетическаясвязьмеждуразличнымиклассамиу		
			глеводородов. Качественные реакции на непредельные		
			углеводороды.		
			Галогенопроизводные углеводородов. Реакции		
			замещения галогена на гидроксил, нитрогруппу, цианогруппу.		
			Действие на галогенпроизводные водного и спиртового раствора		
			щелочи. Сравнение реакционной способности алкил-, винил-, фенил- и		
			бензилгалогенидов. Использование галогенпроизводных в быту,		
			технике и в синтезе. Понятие о магнийорганических соединениях.		
			Получение алканов восстановлением иодалканов иодоводородом.		
			Магнийорганические соединения.		
4	Глава 4.	19	Спирты. Понятие о спиртах, история их изучения. Функциональная	Π/p3	«Получение
	Кислородсодержащие		гидроксильная группа.	бромэтана»	

органические	Классификация спиртов: по типу углеводородного радикала	П12 Спирты
соединения»	(предельные, непредельные, ароматические), по числу гидроксильных	П/р4 «Получение
сосдинения»	групп в молекуле (одно- и многоатомные), по типу углеродного атома,	уксусной кислоты и
	связанного с гидроксильной группой (первичные, вторичные,	изучение ее свойств»
	третичные).	П13 Решение задач
	Электронное и пространственное строение молекул спиртов.	К/р3
	Гомологический ряд предельных одноатомных спиртов. Изомерия	«Кислородсодержащие
	(положения функциональной группы, углеродного скелета,	органические соединения»
	межклассовая) и номенклатура алканолов.	органические соединения»
	Общие способы получения алканолов: гидратация алкенов, гидролиз	
	галогеналканов, восстановление карбонильных соединений. Способы	
	получения некоторых алканолов: метилового спирта — реакцией	
	щелочного гидролиза хлорметана и из синтез-газа; этилового спирта —	
	спиртовым брожением глюкозы и гидратацией этилена; пропанола-1—	
	восстановлением пропионового альдегида; пропанола-2 —	
	гидрированием ацетона и гидратацией пропилена.	
	Физические свойства спиртов. Водородная связь. Прогноз реакционной	
	способности предельных одноатомных спиртов и его подтверждение	
	при рассмотрении химических свойств спиртов: кислотные свойства,	
	реакции нуклеофильного замещения с галогеноводородами,	
	межмолекулярная и внутримолекулярная дегидратация (получение	
	простых эфиров и алкенов), реакции дегидрирования, окисления и	
	этерификации.	
	Низшие и высшие (жирные) спирты. Синтетические моющие средства	
	(СМС). Области применения метанола на основе его свойств.	
	Токсичность метанола. Области применения этилового спирта на	
	основе его свойств. Алкоголизм как социальное явление и его	
	профилактика.	
	Многоатомные спирты. Атомность спиртов. Гликоли и глицерины.	
	Изомерия, номенклатура и получение многоатомных спиртов.	
	Особенности химических свойств многоатомных спиртов.	
	Качественная реакция на многоатомные спирты.	
	Этиленгликоль и глицерин, как представители многоатомных спиртов.	
	Их применение.	
	Фенолы. Состав и строение молекулы фенола. Атомность фенолов.	

Гомологический ряд, изомерия и номенклатура фенолов.

Способы получения фенола: из каменноугольной смолы, кумольный способ, из галогенаренов и методом щелочного плава.

Физические свойства фенолов. Химические свойства фенола: кислотные свойства, окисление, реакции электрофильного замещения (галогенирование, нитрование), поликонденсация.

Качественные реакции на фенол: с бромной водой и раствором хлорида железа(III). Применение фенолов.

Альдегиды. Альдегиды как карбонильные органические соединения. Состав их молекул и электронное строение. Гомологический ряд, изомерия и номенклатура альдегидов.

Способы получения: окисление соответствующих спиртов, окисление углеводородов (Вакер-процесс), гидратация алкинов, пиролиз карбоновых кислот или их солей, щелочной гидролиз дигалогеналканов.

Физические свойства альдегидов. Прогноз реакционной способности Химические свойства: альдегидов. реакции присоединения (циановодорода, гидросульфита натрия, реактива Гриньяра, реакции окисления (серебряного гидрирование), зеркала и комплексами меди(II)), реакции конденсации (альдольная и кротоновая, с азотистыми основаниями и поликонденсации), реакции замещения по α-углеродному атому.

Кетоны. Кетоны как карбонильные соединения. Особенности состава и электронного строения их молекул.

Гомологический ряд, изомерия и номенклатура кетонов. Способы получения кетонов.

Физические свойства кетонов. Прогноз реакционной способности кетонов.

Химические свойства: реакции присоединения (циановодорода, гидросульфита натрия, реактива Гриньяра, гидрирование), реакции окисления, реакции замещения по α -углеродному атому.

Карбоновые кислоты. Понятие о карбоновых кислотах. Классификация карбоновых кислот: по природе углеводородного радикала, по числу карбоксильных групп. Электронное и пространственное строение карбоксильной группы. Карбоновые кислоты в природе.

Гомологический ряд предельных одноосновных карбоновых кислот. Изомерия и номенклатура.

Получение карбоновых кислот окислением алканов, алкенов, первичных спиртов и альдегидов, а также гидролизом (тригалогеналканов, нитрилов).

Получение муравьиной кислоты взаимодействием гидроксида натрия с оксидом углерода (II), уксусной — карбонилированием метилового спирта и брожением этанола, пропионовой — карбонилированием этилена.

Физические свойства карбоновых кислот, обусловленные молярными массами и водородными связями. Прогноз химических свойств карбоновых кислот. Общие свойства кислот. Реакции по углеводородному радикалу. Образование функциональных производных. Реакция этерификации. Образование галогенангидридов, ангидридов, амидов, нитрилов.

Муравьиная и уксусная кислоты, как представители предельных одноосновных карбоновых кислоты. Пальмитиновая и стеариновая кислоты, как представители высших предельных одноосновных карбоновых кислот. Акриловая и метакриловая кислоты, как представители непредельных одноосновных карбоновых кислот. Олеиновая, линолевая и линоленовая, как представители высших непредельных одноосновных карбоновых кислот. Бензойная и салициловая, как представители ароматических карбоновых кислот. Двухосновные карбоновые кислоты на примере щавелевой. Применение и значение карбоновых кислот.

Соли карбоновых кислот. Мыла. Получение солей карбоновых кислот на основе общих свойств кислот: взаимодействием с активными металлами, основными оксидами, основаниями или солями. Получение солей карбоновых кислот щелочным гидролизом сложных эфиров. Химические свойства солей карбоновых кислот: гидролиз по катиону, реакции ионного обмена, пиролиз, электролиз водных растворов. Мыла. Жёсткость воды и способы её устранения. Применение солей карбоновых кислот.

Сложные эфиры. Строение молекул, номенклатура и изомерия сложных эфиров. Их физические свойства. Способы получения

			сложных эфиров: реакция этерификации, взаимодействие спиртов с ангидридами или галогенангидридами кислот реакцией поликонденсации на примере получения полиэтилентерефталата. Химические свойства сложных эфиров: гидролиз и горение. Применение сложных эфиров.	
5	Глава 5. Азот и серосодержащие органические соединения	5	Нитросоединения. Электронное строение нитрогруппы. Получение нитросоединений. Взрывчатые вещества. А м и н ы. Изомерия аминов. Первичные, вторичные и третичные амины. Физические свойства простейших аминов. Амины как органические основания. Соли алкиламмония. Алкилирование и ацилирование аминов. Реакции аминов с азотистой кислотой. Ароматические амины. Анилин. Взаимное влияние групп атомов в молекуле анилина. Химические свойства анилина (основные свойства, реакции замещения в ароматическое ядро,окисление, ацилирование). Диазосоединения. Получение аминов из спиртов и нитросоединений. Применение анилина. Сероорганические соединения. Представление о сероорганических соединениях. Особенности их строения и свойств. Значение сероорганических соединений. Гетероциклов. Электронное строение молекулы пиррола. Кислотные свойства пиррола. Пиридин как представитель шестичленных гетероциклов. Электронное строение молекулы пиридина. Основные свойства пиридина, реакции замещения с ароматическим ядром. Представление об имидазоле, пиридине, пурине, пуриновых и пиримидиновых основаниях.	П14 «Азотсодержащие органические вещества»
6	Глава 6. Биологически активные вещества	15	Ж и р ы как сложные эфиры глицерина и высших карбоновых кислот. Омыление жиров. Гидрогенизация жиров. Мыла как соли высших карбоновых кислот. У г л е в о д ы. Моно- и дисахариды. Функции углеводов. Биологическая роль углеводов. Глюкоза — физические свойства, линейная и циклическая формы. Реакции глюкозы (окисление азотной кислотой, восстановление в шестиатомный спирт),	П15 углеводы П 16 АК П/р 5 «Гидролиз крахмала» П/р6 «Идентификация органических соединений»
			качественные реакции на глюкозу. Брожение глюкозы. Фруктоза как изомер глюкозы. Рибоза и дезоксирибоза. Понятие о гликоД и с а х а р	• •

	1	1		T
			и д ы. Сахароза как представитель невосстанавливающих дисахаридов.	органические вещества»
			Мальтоза и лактоза, целлобиоза. Гидролиз дисахаридов. Получение	
			сахара из сахарной свеклы.	
			Полисахариды. Крахмал, гликоген, целлюлоза. Качественная	
			реакция на крахмал. Гидролиз полисахаридов.	
			Нуклеинове	
			кислоты как природные полимеры. Строение ДНК и РНК. Гидролиз	
			нуклеиновых кислот.	
			Аминокислоты как амфотерные соединения. Реакции с	
			кислотами и основаниями. Образование сложных эфиров. Пептиды.	
			Пептидная связь. Амидный характер пептидной связи. Гидролиз	
			пептидов. Белки. Первичная, вторичная и третичная структуры белков.	
			Качественные реакции на белки.	
7	Глава 7. Синтетические	4	Понятие о высокомолекулярных веществах. Полимеризация и	Т4 Амины, аминокислоты
	высокомолекулярные		поликонденсация как методы создания полимеров. Эластомеры.	П10 Белки, НК
	соединения		Природный и синтетический каучук. Сополимеризация. Современные	П/Р4«Амины,
			пластики (полиэтилен, полипропилен, полистирол, поливинилхлорид,	аминокислоты, Белки»
			фторопласт, полиэтилентерефталат, акрил-бутадиен-стирольный	ĺ
			пластик, поликарбонаты). Природные и синтетические волокна (обзор).	

икароонаты).Природные и синтети Содержание учебного предмета 11класс

No	Название глав/модулей	Количе	Содержание учебного раздела	Практические работы
		ство		$(\Pi/p),$
		часов		Проверочные работы (П),
				тесты (Т), контрольные
				работы (К/р),
				реферативные,
				исследовательские и
				проектные работы и др.
1	Глава 1. Неметаллы	31	Классификациянеорганическихвеществ.	П1.Галогены
			Элементы металлы и неметаллы и их положение в Периодической	П2 Халькогены
			системе. В о д о р о д. Получение, физические и химические свойства	ПЗ Азот и его соединения
			(реакции с металлами и неметаллами, восстановление оксидов и солей).	П4 Углерод
			Гидриды. Топливные элементы.	K/p1
			Галогены. Общая характеристика подгруппы. Физические свойства	Пр/р1 Получение

простых веществ. Закономерности изменения окислительной активности галогенов в соответствии с их положением в периодической таблице. Порядок вытеснения галогенов из растворов галогенидов. Особенности химии фтора. Хлор — получение в промышленности и лаборатории, реакции с металлами и неметаллами. Взаимодействие хлора с водой и растворами щелочей. Кислородные соединения хлора. Гипохлориты, хлорат и перхлораты как типичные окислители. Особенности химии брома и иода. Качественная реакция на йод. Галогеноводороды — получение, кислотные и восстановительные свойства. Соляная кислота и ее соли. Качественные реакции на галогенид-ионы.

Элементы подгруппык и слорода. Общая характеристика Физические свойства простых веществ. Озон как аллотропная модификация кислорода. Получение озона. Озон как окислитель. Позитивная и негативная роль озона в окружающей среде. Сравнение свойств озона и кислорода. Вода и пероксид водорода как водородные соединения кислорода —сравнение свойств. Пероксид водорода как окислитель и восстановитель. Пероксиды металлов. Сера. Аллотропия серы. Физические и химические свойства серы (взаимодействие с металлами, кислородом, водородом, растворами щелочей, кислотами-окислителями). Сероводород — получение, кислотные и восстановительные свойства. Сульфиды. Сернистый газ как кислотный оксид. Окислительные и восстановительные свойства сернистого газа. Получение сернистого газа в промышленности и лаборатории. Сернистая кислота и ее соли. Серный ангидрид. Серная кислота. Свойства концентрированной и разбавленной серной кислоты. Действие концентрированной серной кислоты на сахар, металлы, сульфиды. Термическая устойчивость сульфатов. неметаллы. Качественная реакция на серную кислоту и ее соли. Тиосерная кислота и тиосульфаты.

А з о т и е г о с о е д и н е н и я. Элементы подгруппы азота. Общая характеристика подгруппы. Физические свойства простых веществ. Строение молекулы азота. Физические и химические свойства азота. Получение азота в промышленности и лаборатории. Нитриды. Аммиак — его получение, физические и химические свойства. Основные

водорода Пр/p2

Пр/p2 Получение хлороводорода и соляной кислоты

Пр/р3 Получение аммиака и изучение его свойств

Пр/р4 Получение углекислого газа

Пр/р 5 Выполнение экспериментальных задач по теме «Неметаллы»

свойства

Водных растворов аммиака. Соли аммония. Поведение солей аммония при нагревании. Аммиак как восстановитель. Применение аммиака. Оксиды азота, их получение и свойства. Оксид азота(I). Окисление оксида азота(II) кислородом. Димеризация оксида азота(IV). Азотистая кислота и ее соли. Нитриты как окислители и восстановители. Азотная кислота — физические и химические свойства, получение. Отношение азотной кислоты к металлам и неметаллам. Зависимость продукта восстановления азотной кислоты от активности металла и концентрации кислоты. Термическая устойчивость нитратов.

Ф о с ф о р и е г о с о е д и н е н и я. Аллотропия фосфора. Химические свойства фосфора (реакции с кислородом, галогенами, металлами, сложными веществами-окислителями, щелочами). Получение и применение фосфора. Фосфорный ангидрид. Ортофосфорная и метафосфорная кислоты и их соли. Качественная реакция на ортофосфаты. Разложение ортофосфорной кислоты. Пирофосфорная кислота и пирофосфаты. Фосфиды. Фосфин. Хлориды фосфора. Оксид фосфора(III),

фосфористая кислота и ее соли.

У г л е р о д. Аллотропия углерода. Сравнение строения и свойств графита и алмаза. Фуллерен как новая молекулярная форма углерода. Графен как монослой графита. Углеродные нанотрубки. Уголь. Активированный уголь. Адсорбция. Химические свойства угля. Карбиды. Гидролиз карбида кальция и карбида алюминия. Карбиды переходных металлов как сверхпрочные материалы. Оксиды углерода. Образование угарного газа

при неполном сгорании угля. Уголь и угарный газ как восстановители. Реакция угарного газа с расплавами щелочей. Синтез формиатов и оксалатов. Углекислый газ. Угольная кислота и ее соли. Поведение средних и кислых карбонатов при нагревании.

К р е м н и й. Свойства простого вещества. Реакции с хлором, кислородом, растворами щелочей. Оксид кремния в природе и технике. Кремниевые кислоты и их соли. Гидролиз силикатов. Силан — водородное соединение кремния.

Б о р. Оксид бора. Борная кислота и ее соли. Бура.

Щ е л о ч н ы е м е т а л л ы — общая характеристика подгруппы, характерные реакции натрия и калия. Свойства щелочных металлов. Пр/р6 Получ получение щелочных металлов. Сода и едкий натр — важнейшие соли соединения натрия. Бериллий, магний, щелочноземельные металлы. Магний и кальций, их Пр/р7Выполи	е и щелочно-
Металлов. Щелочные металлов. щелочных металлов. Сода и едкий натр — важнейшие соединения натрия. Бериллий, магний, щелочноземельные металлы. Магний и кальций, их общая характеристика на основе положения в Периодической системе элементов Д. И. Менделеева и строения атомов. Получение, физические и химические свойства, применение магния, кальция и их соединений. Амфотерность оксида и гидроксида бериллия. Жесткость воды и способы ее устранения. Окраска пламени солями щелочных и щелочноземельных металлов. А л ю м и и й. Распространенность в природе, физические и химические свойства (отношение к кислороду, галотенам, растворам кислот и щелочей, алюмотермия). Амфотерность оксида и гидроксида алюминия. Соли алюминия. Соли алюминия в растворе. Применение алюминия. Соединения алюминия в низших степенях окисления. О л о в о и с в и н е ц. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(П) и свинца(П). Свинцовый аккумулятор. М е т а л л ы п о б о ч н ы х п о д г р у п п. Особенности строения атомов переходных металлов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	таллы
ПЦ с л о ч н ы с м с т а л л ы — общая характеристика подгруппы, характерные реакции натрия и калия. Свойства щелочных металлов. Получение пцелочных металлов. Сода и едкий натр — важнейшие соединения натрия. Бериллий, магний, щелочноземельные металлы. Магний и кальций, их общая характеристика на основе положения в Периодической системе элементов Д. И. Менделеева и строения атомов. Получение, физические и химические свойства, применение матпия, кальция и их соединений. Амфотерность оксида и гидроксида бериллия. Жесткость воды и способы ее устранения Окраска пламени солями шелочных и щелочноземельных металлов. А л ю м и н и й. Распространенность в природе, физические и химические свойства (отношение к кислороду, галогенам, растворам кислот и пцелочей, алюмотермия). Амфотерность оксида и гидроксида алюминия. Соли алюминия. Полное разложение водой солей алюминия со слабыми двухосновными кислотами. Алюминаты в твердом виде и в растворе. Применение алюминия. Соединения алюминия в низших степенях окисления. О л о в о и с в и н е ц. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(П) и свинца(П). Свинцовый аккумулятор. М е т а л л ы п о б о ч н ы х п о д г р у п п. Особенности строения атомов переходных мсталлов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	й
характерные реакции натрия и калия. Свойства щелочных металлов. Получение щелочных металлов. Сода и едкий натр — важнейшие соединения натрия. Бериллий, магний, щелочноземельные металлы. Магний и кальций, их общая характеристика на основе положения в Периодической системе элементов Д. И. Менделеева и строения атомов. Получение, физические и химические свойства, применение магния, кальция и их соединений. Амфотерность оксида и гидроксида бериллия. Жесткость воды и способы ее устранения. Окраска пламени солями щелочных и щелочноземельных металлов. А л ю м и и и й. Распространенность в природе, физические и химические свойства (отношение к кислороду, галогенам, растворам кислот и щелочей, алюмотермия). Амфотерность оксида и гидроксида алюминия. Соли алюминия. Полное разложение водой солей алюминия со слабыми двухосновными кислотами. Алюминаты в твердом виде и в растворе. Применение алюминия. Соединения алюминия в низших степенях окисления. О л о в о и с в и и е ц. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(II) и свинца(II). Свинцовый аккумулятор. М е т а л л ы п о б о ч н ы х п о д г р у п п. Особенности строения атомов переходных металлов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	ы побочных
Получение щелочных металлов. Сода и едкий натр — важнейшие соединения натрия. Бериллий, магний, щелочноземельные металлы. Магний и кальций, их общая характеристика на основе положения в Периодической системе элементов Д. И. Менделеева и строения атомов. Получение, физические и химические свойства, применение магния, кальция и их соединений. Амфотерность оксида и гидроксида бериллия. Жесткость воды и способы ее устранения. Окраска пламени солями щелочных и щелочноземельных металлов. А л ю м и и и й. Распространенность в природе, физические и химические свойства (отношение к кислороду, галогенам, растворам кислот и щелочей, алюмотермия). Амфотерность оксида и гидроксида алюминия. Соли алюминия. Полное разложение водой солей алюминия со слабыми двухосновными кислотами. Алюминаты в твердом виде и в растворе. Применение алюминия. Соединения алюминия в низших степсиях окисления. О л о в о и с в и н е ц. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(П) и свинца(П). Свинцовый аккумулятор. М е т а л л ы п о б о ч н ы х п о д г р у п п. Особенности строения атомов переходных металлов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окисления.	
соединения натрия. Бериллий, магний, щелочноземельные металлы. Магний и кальций, их общая характеристика на основе положения в Периодической системе элементов Д. И. Менделеева и строения атомов. Получение, физические и химические свойства, применение магния, кальция и их соединений. Амфотерность оксида и гидроксида бериллия. Жесткость воды и способы ее устранения. Окраска пламени солями щелочных и щелочноземельных металлов. А л ю м и и и й. Распространенность в природе, физические и химические свойства (отношение к кислороду, галогенам, растворам кислот и щелочей, алюмотермия). Амфотерность оксида и гидроксида алюминия. Соли алюминия. Полное разложение водой солей алюминия со слабыми двухосновными кислотами. Алюминаты в твердом виде и в растворе. Применение алюминия. Соединения алюминия в низших степенях окисления. О л о в о и с в и и е ц. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(II) и свинца(II). Свинцовый аккумулятор. М с т а л л ы п о б о ч н ы х п о д г р у п п. Особенности строения атомов переходных металлов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот).Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	ение горькой
Бериллий, магний, щелочноземельные металлы. Магний и кальций, их общая характеристика на основе положения в Периодической системе и химические свойства, применение магния, кальция и их соединений. Амфотерность оксида и гидроксида бериллия. Жесткость воды и плавных под Пр/р8 оксперимента щелочноземельных металлов. А л ю м и и й. Распространенность в природе, физические и химические свойства (отношение к кислороду, галогенам, растворам кислот и щелочей, алюмотермия). Амфотерность оксида и гидроксида алюминия. Соли алюминия. Полное разложение водой солей алюминия со слабыми двухосновными кислотами. Алюминаты в твердом виде и в растворе. Применение алюминия. Соединения алюминия в низших степенях окисления. О л о в о и с в и н е ц. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(П) и свинца(П). Свинцовый аккумулятор. М е т а л л ы п о б о ч ны х п о д г р у п п. Особенности строения атомов переходных металлов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот).Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	(семиводного
общая характеристика на основе положения в Периодической системе элементов Д. И. Менделеева и строения атомов. Получение, физические и химические свойства, применение магния, кальция и их соединений. Амфотерность оксида и гидроксида бериллия. Жесткость воды и способы ее устранения. Окраска пламени солями щелочных и щелочноземельных металлов. А л ю м и н и й. Распространенность в природе, физические и химические свойства (отношение к кислороду, галогенам, растворам кислот и щелочей, алюмотермия). Амфотерность оксида и гидроксида алюминия. Соли алюминия. Полное разложение водой солей алюминия со слабыми двухосновными кислотами. Алюминаты в твердом виде и в растворе. Применение алюминия. Соединения алюминия в низших степенях окисления. О л о в о и с в и н е ц. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(П) и свинца(П). Свинцовый аккумулятор. М е т а л л ы п о б о ч н ы х п о д г р у п п. Особенности строения атомов переходных металлов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	ния).
элементов Д. И. Менделеева и строения атомов. Получение, физические и химические свойства, применение магния, кальция и их соединений. Амфотерность оксида и гидроксида бериллия. Жесткость воды и способы ее устранения. Окраска пламени солями щелочных и щелочноземельных металлов. А л ю м и н и й. Распространенность в природе, физические и химические свойства (отношение к кислороду, галогенам, растворам кислот и щелочей, алюмотермия). Амфотерность оксида и гидроксида алюминия. Соли алюминия. Полное разложение водой солей алюминия со слабыми двухосновными кислотами. Алюминаты в твердом виде и в растворе. Применение алюминия. Соединения алюминия в низших степенях окисления. О л о в о и с в и н е ц. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(II) и свинца(II). Свинцовый аккумулятор. М е т а л л ы п о б о ч н ы х п о д г р у п п. Особенности строения атомов переходных металлов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	нение
и химические свойства, применение магния, кальция и их соединений. Амфотерность оксида и гидроксида бериллия. Жесткость воды и способы ее устранения. Окраска пламени солями щелочных и щелочноземельных металлов. А л ю м и н и й. Распространенность в природе, физические и химические свойства (отношение к кислороду, галогенам, растворам кислот и щелочей, алюмотермия). Амфотерность оксида и гидроксида алюминия. Соли алюминия. Полное разложение водой солей алюминия со слабыми двухосновными кислотами. Алюминаты в твердом виде и в растворе. Применение алюминия. Соединения алюминия в низших степенях окисления. О л о в о и с в и н е ц. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(II) и свинца(II). Свинцовый аккумулятор. М е т а л л ы п о б о ч н ы х п о д г р у п п. Особенности строения атомов переходных металлов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	альных задач
Амфотерность оксида и гидроксида бериллия. Жесткость воды и способы ее устранения. Окраска пламени солями щелочных и щелочноземельных металлов. А л ю м и н и й. Распространенность в природе, физические и химические свойства (отношение к кислороду, галогенам, растворам кислот и щелочей, алюмотермия). Амфотерность оксида и гидроксида алюминия. Соли алюминия. Полное разложение водой солей алюминия со слабыми двухосновными кислотами. Алюминаты в твердом виде и в растворе. Применение алюминия. Соединения алюминия в низших степенях окисления. О л о в о и с в и н е ц. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(II) и свинца(II). Свинцовый аккумулятор. М е т а л л ы п о б о ч н ы х п о д г р у п п. Особенности строения атомов переходных металлов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	«Металлы
способы ее устранения. Окраска пламени солями щелочных и щелочноземельных металлов. А л ю м и н и й. Распространенность в природе, физические и химические свойства (отношение к кислороду, галогенам, растворам кислот и щелочей, алюмотермия). Амфотерность оксида и гидроксида алюминия. Соли алюминия. Полное разложение водой солей алюминия со слабыми двухосновными кислотами. Алюминаты в твердом виде и в растворе. Применение алюминия. Соединения алюминия в низших степенях окисления. О л о в о и с в и н е ц. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(II) и свинца(II). Свинцовый аккумулятор. М е т а л л ы п о б о ч н ы х п о д г р у п п. Особенности строения атомов переходных металлов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	
щелочноземельных металлов. А л ю м и н и й. Распространенность в природе, физические и химические свойства (отношение к кислороду, галогенам, растворам кислот и щелочей, алюмотермия). Амфотерность оксида и гидроксида алюминия. Соли алюминия. Полное разложение водой солей алюминия со слабыми двухосновными кислотами. Алюминаты в твердом виде и в растворе. Применение алюминия. Соединения алюминия в низших степенях окисления. О л о в о и с в и н е ц. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(II) и свинца(II). Свинцовый аккумулятор. М е т а л л ы п о б о ч н ы х п о д г р у п п. Особенности строения атомов переходных метаплов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	Выполнение
А л ю м и н и й. Распространенность в природе, физические и химические свойства (отношение к кислороду, галогенам, растворам кислот и щелочей, алюмотермия). Амфотерность оксида и гидроксида алюминия. Соли алюминия. Полное разложение водой солей алюминия со слабыми двухосновными кислотами. Алюминаты в твердом виде и в растворе. Применение алюминия. Соединения алюминия в низших степенях окисления. О л о в о и с в и н е ц. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(II) и свинца(II). Свинцовый аккумулятор. М е т а л л ы п о б о ч н ы х п о д г р у п п. Особенности строения атомов переходных металлов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот).Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	
химические свойства (отношение к кислороду, галогенам, растворам кислот и щелочей, алюмотермия). Амфотерность оксида и гидроксида алюминия. Соли алюминия. Полное разложение водой солей алюминия со слабыми двухосновными кислотами. Алюминаты в твердом виде и в растворе. Применение алюминия. Соединения алюминия в низших степенях окисления. О л о в о и с в и н е ц. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(II) и свинца(II). Свинцовый аккумулятор. М е т а л л ы п о б о ч н ы х п о д г р у п п. Особенности строения атомов переходных металлов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	«Металлы
кислот и щелочей, алюмотермия). Амфотерность оксида и гидроксида алюминия. Соли алюминия. Полное разложение водой солей алюминия со слабыми двухосновными кислотами. Алюминаты в твердом виде и в растворе. Применение алюминия. Соединения алюминия в низших степенях окисления. О л о в о и с в и н е ц. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(II) и свинца(II). Свинцовый аккумулятор. М е т а л л ы п о б о ч н ы х п о д г р у п п. Особенности строения атомов переходных металлов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	1 "
алюминия. Соли алюминия. Полное разложение водой солей алюминия со слабыми двухосновными кислотами. Алюминаты в твердом виде и в растворе. Применение алюминия. Соединения алюминия в низших степенях окисления. О л о в о и с в и н е ц. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(II) и свинца(II). Свинцовый аккумулятор. М е т а л л ы п о б о ч н ы х п о д г р у п п. Особенности строения атомов переходных металлов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	Ic
со слабыми двухосновными кислотами. Алюминаты в твердом виде и в растворе. Применение алюминия. Соединения алюминия в низших степенях окисления. О л о в о и с в и н е ц. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(II) и свинца(II). Свинцовый аккумулятор. М е т а л л ы п о б о ч н ы х п о д г р у п п. Особенности строения атомов переходных металлов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	
растворе. Применение алюминия. Соединения алюминия в низших степенях окисления. О л о в о и с в и н е ц. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(II) и свинца(II). Свинцовый аккумулятор. М е т а л л ы п о б о ч н ы х п о д г р у п п. Особенности строения атомов переходных металлов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	
степенях окисления. О л о в о и с в и н е ц. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(II) и свинца(II). Свинцовый аккумулятор. М е т а л л ы п о б о ч н ы х п о д г р у п п. Особенности строения атомов переходных металлов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	
О л о в о и с в и н е ц. Физические и химические свойства (реакции с кислородом, кислотами), применение. Соли олова(II) и свинца(II). Свинцовый аккумулятор. М е т а л л ы п о б о ч н ы х п о д г р у п п. Особенности строения атомов переходных металлов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	
кислородом, кислотами), применение. Соли олова(II) и свинца(II). Свинцовый аккумулятор. М е т а л л ы п о б о ч н ы х п о д г р у п п. Особенности строения атомов переходных металлов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	
Свинцовый аккумулятор. М е т а л л ы п о б о ч н ы х п о д г р у п п. Особенности строения атомов переходных металлов. Х р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	
Металлы побочных подгрупп. Особенности строения атомов переходных металлов. Хром. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	
атомов переходных металлов. X р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	
X р о м. Физические свойства, химические свойства (отношение к водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	
водяному пару, кислороду, хлору, растворам кислот). Изменение окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	
окислительно-восстановительных и кислотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления.	
оксидов и гидроксидов хрома с ростом степени окисления.	
Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т	
хрома(III) в хроматы. Взаимные переходы хроматов и дихроматов.	
Хроматы и дихроматы как окислители.	
М а р г а н е ц — физические и химические свойства (отношение к	

3	Глава 3. Строение атома.	8	кислороду, хлору, растворам кислот). Оксид марганца(IV) как окислитель и катализатор. Перманганат калия как окислитель. Манганат(VI) калия и его свойства. Ж е л е з о. Нахождение в природе. Значение железа для организма человека. Физические свойства железа (Взаимодействие с кислородом, хлором, серой, углем, кислотами, растворами солей). Сравнение кислотноосновных и окислительно-восстановительных свойств гидроксида железа(II) и гидроксида железа(III). Соли железа(III) и железа(III). Методы перевода солей железа(III). Соли железа(III) и обратно. Окислительные свойства соединений железа(III) в реакциях с восстановителями (иодидом, медыо). Цианидные комплексы железа. Качественные реакции на ионы железа(II) и (III). М с д ь. Нахождение в природе. Физические и химические свойства (взаимодействие с кислородом, хлором, серой, кислотамиокислителями). Соли меди(II). Медный купорос. Аммиакаты меди(I) и меди(II). Получение оксида меди(I) восстановлением гидроксида меди(II) глюкозой. С е р е б р о. Физические и химические свойства (взаимодействие с серой, хлором, кислотами-окислителями). Осаждение оксида серебра при действии щелочи на соли серебра. Аммиакаты серебра как окислители. Качественная реакция на ионы серебра. З о л о т о. Физические и химические свойства (взаимодействие с хлором, «царской водкой». Способы выделения золота из золотоносной породы. Ц и н к. Физические и химические свойства (взаимодействие с галогенами, кислородом, серой, растворами кислот и щелочей). Амфотерность оксида и гидроксида цинка. Р т у т ь. Представление о свойствах ртуги и ее соединениях.	П8 Строение атома
3	Глава 3. Строение атома. Химическая связь	8	Строение атом а. Нуклиды. Изотопы. Типы радио- активного распада. Термоядерный синтез. Получение новых элементов. Ядерные реакции. Строение электронных оболочек атомов. Представление о квантовой механике. Квантовые числа. Атомные орбитали. Радиус атома. Электроотрицательность. Химической связи. Ковалентная связь и ее характеристики	П8 Строение атома Т1 Химическая связь

			(длина связи, полярность, поляризуемость, кратность связи). Ионная связь. Металлическая связь. Строениет вердых тел. Кристаллические и аморфные тела. Типы кристаллических решеток металлов и ионных соединений. Межмолекулярные взаимодействия. Водородная связь.	
4	Глава 4. Основные закономерности протекания химических реакций	17	Тепловой эффектхимические реакции. Закон Гесса. Теплота образования вещества. Энергия связи. Понятие об энтальПонятие об энтропии. Второй закон термодинамики. Энергия Гиббса и критерии самопроизвольности химической реакции. Скоростьхимической реакции. Скоростьхимической реакции. Скоростьхимической реакции. Скоростьхимической реакции реагентов, температуры, наличия катализатора, площади поверхности реагирующих веществ. Закон действующих масс. Правило Вант-Гоффа. Понятие об энергии активации и об энергетическом профиле реакции. Гомогенный и гетерогенный катализ. Примеры каталитических процессов в технике и в живых организмах. Ферменты как биологические катализаторы. Обратимы ереакции. Расчет рнастворов сильных кислот и щелочей. Произведение растворимости. Рядактивации. Расчет рнастворов сильных кислот и щелочей. Произведение растворимости. Рядактивации. Расчет рнастворов сильных кислот и щелочей. Произведение растворимости. Рядактивации. Расчет рнастворов сильных кислот и шелочей. Произведение растворимости. Рядактивации. Расчет рнастворов сильных кислот и шелочей. Произведение растворимости. Рядактивация и электродвижущей силе реакции. Химические источники тока: гальванические элементы, аккумуляторы и топливные элементы. Электролиз расплавов и водных растворов электролитов. Законы электролиза.	
5	Глава 5 Химическая технология	6	Основные принципыхимической технологии. Производства серной кислоты. Технологическая схема процесса, процессы и аппараты. Производства серной кислоты. Технологическая схема процесса, процессы и аппараты. Производства серной кислоты. технологическая схема процесса, процессы и аппараты. Производство до тво аммиак процесса. Определение оптимальных условий проведения реакции. Принцип циркуляции и его реализация в технологической схеме. Металлургия. Доменный процесс (сырье, устройство доменной печи, химизм процесса). Производство стали в	Р Зеленая химия

			кислородном конвертере и в электропечах. Органический синтез. Синтезы на основе синтез-газа. Производство метанола. Экология и проблема охраны окружающей среды. Зеленая химия	
6	Глава 6 Химия в быту и на службе общества	10	Химия пищи. Жиры, белки, углеводы, витамины. Пищевые добавки, их классификация. Запрещенные и разрешенные пищевые добавки. Лекарственные средства. Краски и пигменты. Принципы окрашивания тканей. Химия в строительстве. Цемент, бетон. Стекло и керамика. Традиционные и современные керамические материалы. Сверхпроводящая керамика. Бытовая химия. Отбеливающие средства. Химия в сельском хозяйстве. Инсектициды и пестициды. Средства защиты растений. Репелленты. Особенности современной науки. Методология научного исследования. Профессия химика. Математическая химия. Поиск химической информации. Работа с базами данных.	